Approximations for the fields under steady space-charge perturbed current flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys.: Condens. Matter 19969
(http://iopscience.iop.org/0953-8984/1/49/016)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.96
The article was downloaded on 10/05/2010 at 21:17

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Approximations for the fields under steady space-charge perturbed current flow

J Hirsch \dagger
Department of Physics, Birkbeck College, London WC1E 7HX, UK

Received 27 September 1989

Abstract

Working approximations are given for the fields at the electrodes of a film sample in terms of the ratio between the steady excess current and its space charge limit.

One sometimes requires to determine the field distribution in a thin film sample carrying a steady, space-charge perturbed, excess current. For example, one might wish to deduce the field at the injecting electrode when the measured current density is J and the spacecharge limit $J_{\text {SCL }}$ can be estimated. The field distribution is given by a well known expression (Mott and Gurney 1940, Lampert and Mark 1970) which, for our purpose, is best written as

$$
\begin{equation*}
F(\xi)=\frac{3}{2} \breve{F} f\left(\xi+\xi_{0}\right)^{1 / 2} . \tag{1}
\end{equation*}
$$

Here $\xi=x / L, x$ being the distance from the injecting electrode and L the film thickness; ξ_{0} is a constant of integration; \bar{F} is the average field V / L where V is the applied voltage; and $f=\left(J / J_{\mathrm{SCL}}\right)^{1 / 2}$ where $J_{\mathrm{SCL}}=\frac{9}{8} \varepsilon \mu^{*} F^{2} / \mathrm{L}$ and μ^{*} represents the (generally) trapcontrolled effective carrier mobility, assumed to be independent of field. In particular, the fields at the injecting and counter electrodes are

$$
\begin{equation*}
F_{0}=\frac{3}{2} \bar{F} f \xi_{0}^{1 / 2} \quad F_{L}=\frac{3}{2} \bar{F} f\left(1+\xi_{0}\right)^{1 / 2} . \tag{2}
\end{equation*}
$$

The constant ξ_{0} must be determined from the condition $\int F L \mathrm{~d} \xi=V$ which simplifies to

$$
\begin{equation*}
\left(1+\xi_{0}\right)^{3 / 2}-\xi_{0}^{3 / 2}=f^{-1} \tag{3}
\end{equation*}
$$

For a given value of f, ξ_{0} must be found by computation. The author is not aware of any simple approximate solution for ξ_{0} in terms of f available in the literature, and the purpose of this letter is to offer such a working approximation.

Let $y=\frac{2}{3}\left(F_{L} / \bar{F}\right) f^{-1}$, then (2) and (3) yield

$$
\begin{equation*}
y^{3}-\left(y^{2}-1\right)^{3 / 2}=f^{-1} . \tag{4}
\end{equation*}
$$

For small enough f, expansion gives

$$
\begin{equation*}
y^{2}-\frac{2}{3} f^{-1} y-\frac{1}{4}=0 \tag{5}
\end{equation*}
$$

which has the approximate solution, linear in $f^{2}=J / J_{\text {SCL }}$,

$$
\begin{equation*}
F_{L} / \bar{F} \simeq 1+\frac{9}{16} f^{2} . \tag{6}
\end{equation*}
$$

For $J / J_{\text {SCL }} \leqslant 0.3$, this approximation differs from the computed values by $<1 \%$, but it

[^0]

Figure 1. F_{L} / \bar{F} and F_{0} / \bar{F} as functions of J / J_{sCl}. Curves: computed; points: calculated from approximations (7) and (9).
clearly fails for larger arguments, since F_{L} / \bar{F} should tend to 1.5 as J approaches $J_{\text {SCL }}$. However, the ad hoc approximation, also linear in J / J_{SCL},

$$
\begin{equation*}
F_{L} / \bar{F} \simeq 1+0.5 f^{2}=1+0.5 J / J_{\mathrm{SCL}} \tag{7}
\end{equation*}
$$

turns out to be surprisingly good. The error is greatest, but only about -1%, for $J / J_{\text {SCL }}=0.3$, and tends to zero as $J / J_{\text {SCL }}$ approaches 0 or 1 . From (7) and (2) we then obtain

$$
\begin{equation*}
\xi_{0} \simeq \frac{1}{9}\left[4\left(J_{\mathrm{SCL}} / J\right)+\left(J / J_{\mathrm{SCL}}\right)-5\right] \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{0} / \bar{F} \approx\left[1-1.25\left(J / J_{\mathrm{SCL}}\right)+0.25\left(J / J_{\mathrm{SCL}}\right)^{2}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

The errors in ξ_{0} and F / \bar{F} amount to about -7.5% and -4% respectively for J / J_{SCL} between 0.7 and 0.9 , but decrease towards zero as $J / J_{\text {SCL }}$ approaches 0 or 1 .

The curves in figure 1 show the computed dependence of F_{L} / \bar{F} and F_{0} / \bar{F} on $J / J_{\text {SCL }}$. The points represent values calculated from the approximations (7) and (9), which would seem to afford sufficient accuracy for most practical purposes.

References

[^0]: \dagger At present visiting the Department of Electrical Engineering, Imperial College, London SW7 2BT, UK.

